A simplified yaw-attitude model for eclipsing GPS satellites
نویسنده
چکیده
A simplified yaw-attitude modeling, consistent with Bar-Sever (1996), has been implemented and tested in the NRCan PPP software. For Block IIR GPS satellite it is possible to model yaw-attitude control during eclipsing periods by using the constant hardware yaw rate of 0.20 /s. The Block IIR satellites maintain the nominal yaw attitude even during a shadow crossing (Y. E. Bar-Sever, private communication, 2007), except for the noon and shadow midnight turn maneuvers, both of which can be modeled and last up to 15 min. Thus, for Block IIR satellites it is possible to maintain continuous satellite clock estimation even during eclipsing periods. For the Block II/IIA satellites, it is possible to model satisfactorily the noon turns and also shadow crossing, thanks to the permanent positive yaw bias of 0.5 , implemented in November 1995. However, in order to model the Block II/IIA shadow crossings, satellite specific yaw rates should be used, either solved for or averaged yaw-rate solutions. These yaw rates as estimated by the Jet Propulsion Laboratory (JPL) can differ significantly from the nominal hardware values. The Block II/IIA post-shadow recovery periods, which last about 30 min, should be considered uncertain and cannot be properly modeled. Data from post-shadow recovery periods should, therefore, not be used in precise global GPS analyses (BarSever 1996). For high-precision applications, it is essential that users implement a yaw-attitude model, which is consistent with the generation of the satellite clocks. Initial testing and analyses, based on the IGS and AC Final orbits and clocks have revealed that during eclipsing periods, significant inconsistencies in yaw-attitude modeling still exist amongst the IGS Analyses Centers, which contribute to the errors of the IGS Final clock combinations.
منابع مشابه
A New Model for Yaw Attitude of Global Positioning System Satellites
Proper modeling of the Global Positioning System (GPS) satellite yaw attitude is important in high-precision applications. A new model for the GPS satellite yaw attitude is introduced that constitutes a significant improvement over the previously available model in terms of efficiency, flexibility, and portability. The model is described in detail, and implementation issues, including the prope...
متن کاملThe Impact of Eclipsing GNSS Satellites on the Precise Point Positioning
When satellites enter into the noon maneuver or the shadow crossing regimes, the actual attitudes will depart from their nominal values. If improper attitude models are used, the induced-errors due to the wind-up effect and satellite antenna PCO (Phase Center Offset) will deteriorate the positioning accuracy. Because different generations of satellites adopt different attitude control models, t...
متن کاملDynamic Modeling for Earth – Pointing Satellites to Control the Three – axis Attitude without the Attitude Information of One Axis
Various methods are presented to control the attitude of satellite due to lack of information of yaw axis attitude so far. In this paper, a new method is used which is more general and is applicable to all types of satellites, with at least one controller. This method is not limited to YAW axis and can control the two other axes as well. One feature of this approach is the ability to be modi...
متن کاملDynamic Modeling for Earth – Pointing Satellites to Control the Three – axis Attitude without the Attitude Information of One Axis
Various methods are presented to control the attitude of satellite due to lack of information of yaw axis attitude so far.
In this paper, a new method is used which is more general and is applicable to all types of satellites, with at least one controller. 
This method is not limited to YAW axis and can control the two other axes as well. One feature of this approach is the ability to be ...
متن کاملCalibration of Constant Angular Error for Cbers-2 Imagery with Few Ground Control Points
The rigorous geometric model which depends on physical properties of the image acquisition is the basic model for object positioning of high resolution satellite imagery (HRSI). Using the linear and angular elements provided by ephemeris and attitude measuring system carried on the satellite, the object coordinates can be determined by the rigorous geometric model when the image coordinates are...
متن کامل